Saturday, September 12, 2009

Packet Switching Networks

Simultaneous work on secure packet switching networks is taking place at MIT, the RAND Corporation, and the National Physical Laboratory in Great Britain. Paul Baran, Donald Davies, Leonard Kleinrock, and others proceed in parallel research. Baran is one of the first to publish, On Data Communications Networks. Kleinrock’s thesis is also published as a seminal text on queuing theory.

IBM’s new System 360 computers come onto the market and set the de facto worldwide standard of the 8-bit byte, making the 12-bit and 36-bit word machines almost instantly obsolete. The $5 billion investment by IBM into this family of six mutually compatible computers pays off, and within two years orders for the System 360 reach 1,000 per month.

On-line transaction processing debuts with IBM’s SABRE air travel reservation system for American Airlines. SABRE (Semi-Automatic Business Research Environment) links 2,000 terminals in sixty cities via telephone lines.

Licklider leaves ARPA to return to MIT, and Ivan Sutherland moves to IPTO. With IPTO funding, MIT’s Project MAC acquires a GE-635 computer and begins the development of the Multics timesharing operating system.

The First Synchronous Communication


Licklider starts to talk with Larry Roberts of Lincoln Labs, director of the TX-2 project, Ivan Sutherland, a computer graphics expert whom he has hired to work at ARPA and Bob Taylor, who joins ARPA in 1965. Lick contracts with MIT, UCLA, and BBN to start work on his vision.

Syncom, the first synchronous communication satellite, is launched. NASA’s satellite is assembled in the Hughes Aircraft Company’s facility in Culver City, California. Total payload is 55 pounds.

A joint industry-government committee develops ASCII (American Standard Code for Information Interchange), the first universal standard for computers. It permits machines from different manufacturers to exchange data. 128 unique 7-bit strings stand for either a letter of the English alphabet, one of the Arabic numerals, one of an assortment of punctuation marks and symbols, or a special function, such as the carriage return.

Variety Of Computer


At MIT, a wide variety of computer experiments are going on. Ivan Sutherland uses the TX-2 to write Sketchpad, the origin of graphical programs for computer-aided design.

J.C.R. Licklider writes memos about his Intergalactic Network concept, where everyone on the globe is interconnected and can access programs and data at any site from anywhere. He is talking to his own ‘Intergalactic Network’ of researchers across the country. In October, ‘Lick’ becomes the first head of the computer research program at ARPA, which he calls the Information Processing Techniques Office (IPTO).

Leonard Kleinrock completes his doctoral dissertation at MIT on queuing theory in communication networks, and becomes an assistant professor at UCLA.

The SAGE (Semi Automatic Ground Environment), based on earlier work at MIT and IBM, is fully deployed as the North American early warning system. Operators of ‘weapons directing consoles’ use a light gun to identify moving objects that show up on their radar screens. SAGE sites are used to direct air defense. This project provides experience in the development of the SABRE air travel reservation system and later air traffic control systems.

Internet History

This Internet Timeline begins in 1962, before the word ‘Internet’ is invented. The world’s 10,000 computers are primitive, although they cost hundreds of thousands of dollars. They have only a few thousand words of magnetic core memory, and programming them is far from easy.

Domestically, data communication over the phone lines is an AT&T monopoly. The ‘Picturephone’ of 1939, shown again at the New York World’s Fair in 1964, is still AT&T’s answer to the future of worldwide communications.

But the four-year old Advanced Research Projects Agency (ARPA) of the U.S. Department of Defense, a future-oriented funder of ‘high-risk, high-gain’ research, lays the groundwork for what becomes the ARPANET and, much later, the Internet.

By 1992, when this timeline ends,

  • the Internet has one million hosts
  • the ARPANET has ceased to exist
  • computers are nine orders of magnitude faster
  • network bandwidth is twenty million times greater.